Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity
نویسندگان
چکیده
Poly(β-L-malic acid) (PMLA), a natural aliphatic polyester, has been proven to be a promising carrier for anti-cancer drugs. In spite of excellent bio-compatibility, the application of PMLA as the drug carrier for cancer therapy is limited by its low cellular uptake efficiency. The strong negative charge of PMLA impedes its uptake by cancer cells because of the electrostatic repulsion. In this study, a dual pH-sensitive charge-reversal PMLA-based nanocomplex (PMLA-PEI-DOX-TAT@PEG-DMMA) was developed for effective tumor-targeted drug delivery, enhanced cellular uptake, and intracellular drug release. The prepared nanocomplex showed a negative surface charge at the physiological pH, which could protect the nanocomplex from the attack of plasma proteins and recognition by the reticuloendothelial system, so as to prolong its circulation time. While at the tumor extracellular pH 6.8, the DMMA was hydrolyzed, leading to the charge reversal and exposure of the TAT on the polymeric micelles, thus enhancing the cellular internalization. Then, the polymeric micelles underwent dissociation and drug release in response to the acidic pH in the lyso/endosomal compartments of the tumor cell. Both in vitro and in vivo efficacy studies indicated that the nanocomplex significantly inhibited the tumor growth while the treatment showed negligible systemic toxicity, suggesting that the developed dual pH-sensitive PMLA-based nanocomplex would be a promising drug delivery system for tumor-targeted drug delivery with enhanced anticancer activity.
منابع مشابه
Multifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملDopamine-conjugated apoferritin protein nanocage for the dual-targeting delivery of epirubicin
Objective(s): Nanocarriers are drug delivery vehicles, which have attracted the attention of researchers in recent years, particularly in cancer treatment. The encapsulation of anticancer drugs using protein nanocages is considered to be an optimal approach to reducing drug side-effects and increasing the bioavailability of anticancer drugs. Epirubicin (EPR) is an active chemotherapeutic medica...
متن کاملControlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier.
A number of anticancer drugs, such as doxorubicin (DOX), operate only after being transported into the nucleus of cancer cells. Thus it is essential for the drug carriers to effectively release the anticancer drugs into the cytoplasm of cancer cells and make them move to nucleus freely. Herein, a pH-responsive charge-reversal polyelectrolyte and integrin αⅤβ3 mono-antibody functionalized graphe...
متن کاملCharge-reversal nanoparticles: novel targeted drug delivery carriers
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and...
متن کاملDual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery.
Dual-functional liposomes with pH-responsive cell-penetrating peptide (CPP) and active targeting hyaluronic acid (HA) were fabricated for tumor-targeted drug delivery. A series of synthetic tumor pH-triggered CPPs rich in arginines and histidines were screened by comparing tumor cellular uptake efficiency at pH 6.4 with at pH 7.4, and R6H4 (RRRRRRHHHH) was obtained with the optimal pH-response....
متن کامل